Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 26(4)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38667865

RESUMO

In this article, the topic of time series modelling is discussed. It highlights the criticality of analysing and forecasting time series data across various sectors, identifying five primary application areas: denoising, forecasting, nonlinear transient modelling, anomaly detection, and degradation modelling. It further outlines the mathematical frameworks employed in a time series modelling task, categorizing them into statistical, linear algebra, and machine- or deep-learning-based approaches, with each category serving distinct dimensions and complexities of time series problems. Additionally, the article reviews the extensive literature on time series modelling, covering statistical processes, state space representations, and machine and deep learning applications in various fields. The unique contribution of this work lies in its presentation of a Python-based toolkit for time series modelling (PyDTS) that integrates popular methodologies and offers practical examples and benchmarking across diverse datasets.

2.
Sensors (Basel) ; 22(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36236296

RESUMO

The aim of Non-Intrusive Load Monitoring is to estimate the energy consumption of individual electrical appliances by disaggregating the overall power consumption that has been sampled from a smart meter at a house or commercial/industrial building. Last decade's developments in deep learning and the utilization of Convolutional Neural Networks have improved disaggregation accuracy significantly, especially when utilizing two-dimensional signal representations. However, converting time series' to two-dimensional representations is still an open challenge, and it is not clear how it influences the performance of the energy disaggregation. Therefore, in this article, six different two-dimensional representation techniques are compared in terms of performance, runtime, influence on sampling frequency, and robustness towards Gaussian white noise. The evaluation results show an advantage of two-dimensional imaging techniques over univariate and multivariate features. In detail, the evaluation results show that: first, the active and reactive power-based signatures double Fourier based signatures, as well as outperforming most of the other approaches for low levels of noise. Second, while current and voltage signatures are outperformed at low levels of noise, they perform best under high noise conditions and show the smallest decrease in performance with increasing noise levels. Third, the effect of the sampling frequency on the energy disaggregation performance for time series imaging is most prominent up to 1.2 kHz, while, above 1.2 kHz, no significant improvements in terms of performance could be observed.


Assuntos
Redes Neurais de Computação , Ruído , Distribuição Normal
3.
Entropy (Basel) ; 22(1)2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33285847

RESUMO

In this article an energy disaggregation architecture using elastic matching algorithms is presented. The architecture uses a database of reference energy consumption signatures and compares them with incoming energy consumption frames using template matching. In contrast to machine learning-based approaches which require significant amount of data to train a model, elastic matching-based approaches do not have a model training process but perform recognition using template matching. Five different elastic matching algorithms were evaluated across different datasets and the experimental results showed that the minimum variance matching algorithm outperforms all other evaluated matching algorithms. The best performing minimum variance matching algorithm improved the energy disaggregation accuracy by 2.7% when compared to the baseline dynamic time warping algorithm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...